Search results for "Anti-tumor immunity"
showing 3 items of 3 documents
High-Intensity Focused Ultrasound- and Radiation Therapy-Induced Immuno-modulation: Comparison and Potential Opportunities
2017
In recent years, high-intensity focused ultrasound (HIFU) has emerged as a new and promising non-invasive and non-ionizing ablative technique for the treatment of localized solid tumors. Extensive pre-clinical and clinical studies have evidenced that, in addition to direct destruction of the primary tumor, HIFU-thermoablation may elicit long-term systemic host anti-tumor immunity. In particular, an important consequence of HIFU treatment includes the release of tumor-associated antigens (TAAs), the secretion of immuno-suppressing factors by cancer cells and the induction of cytotoxic T lymphocyte (CTL) activity. Radiation therapy (RT) is the main treatment modality used for many types of tu…
Anticoagulation with Factor Xa Inhibitors Is Associated with Improved Overall Response and Progression-Free Survival in Patients with Metastatic Mali…
2021
Immune checkpoint inhibitors (ICI) significantly improved the prognosis of advanced melanoma patients. However, many patients do not derive long-term benefit from ICI therapy due to primary and acquired resistance. In this regard, it has been shown that coagulation factors contribute to cancer immune evasion and might therefore promote resistance to ICI. In particular, recent observations in murine systems demonstrated that myeloid-derived factor Xa (FXa) impedes anti-tumor immunity in the tumor microenvironment and that the oral FXa inhibitor (FXa-i) rivaroxaban synergizes with ICI. The synergistic effect of FXa inhibitors with clinical ICI therapy is unknown. We performed a retrospective …
Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death
2015
The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called "damage-associated molecular patterns" (DAMPs). The emission of DAMPs and other immunostimulatory factors by…